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Resonances and intensity-dependent shifts of the Mdller cross 
section in a strong laser field 

J Bost, W Brockt, H MitterS and Th Schottt 
+ Institut fur Theoretische Physik der Universitat, D-7400 Tubingen, Germany 
$ Institut fur Theoretische Physik der  Universitat, A-8010 Graz, Austria 

Received 18 July 1978 

Abstract. The laser field is treated as a classical external field and represented as a 
monochromatic plane-wave field of circular polarisation. The differential cross section for 
the scattering of unpolarised electrons in this field is calculated and numerically evaluated 
for the non-relativistic energy region. Because of the complicated kinematicsof this process 
an experimental situation is considered where the incoming electrons have opposite and 
equal momentum. It  is shown that the off resonance cross section in a strong field can differ 
considerably from the free case in regions accessible to experimentation for various laser 
and electron parameters. Resonances are found to exist in physical regions. Renor- 
malisation is performed. The resonance cross section, the width and the spacing of the 
resonances are evaluated. Under specific circumstances the resonance cross section is found 
to exceed the off-resonance cross section by several orders of magnitude. The experimental 
conditions for the resonance case, however, seem to be harder to meet than in the off 
resonance case. 

1. Introduction 

In the presence of an intense laser field the electromagnetic interaction processes of 
particles are changed. The theory of strong fields developed in the last decade predicts 
intensity-dependent corrections. So far, however, it has been impossible to measure 
these corrections, either because they were too small or because lasers of the required 
intensity did not exist. Due to  the rapid development of high power lasers it should soon 
be possible to test the theory experimentally. Especially interesting in this context are 
the resonances predicted for Moller scattering by Oleinik (1967, 1968). His work was, 
however, largely theoretically orientated. A numerical value of the resonant cross 
section was given for only one point in an experimentally completely inaccessible 
kinematic region. The question remained whether resonances can be predicted for 
physically reasonable electron and laser parameters. 

In this paper numerical results for resonances and intensity-dependent shifts of the 
cross section are presented which should be large enough for experimental verification. 
The experimental conditions for resonances, however, may be difficult to achieve, 

The calculations are based on the formalism published by Mitter (1975) in a 
summary of quantum electrodynamics in strong laser fields. Perturbation theory is used 
for all non-laser quanta, but not with respect to the laser field, since the coupling 
constant is not small for intense fields. The laser field is represented as an external 
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(classical) plane wave field. In order to simplify the calculations the special case with the 
following preconditions is treated: 

-circularly polarised laser field 
-unpolarised electrons 
-incoming electrons with opposite and equal momenta. 
For technical reasons the numerical calculations could be performed only for the 

non-relativistic energy region. 
For intense fields the external field approximation is quite good as the number of 

laser photons is large. The approximation ceases to be valid when the laser beam is 
considerably depleted by the scattering process. The description of the laser field as a 
plane wave is more problematical. Difficulties arise mainly in formulating the boundary 
conditions since the particles are not asymptotically free. For high-intensity Compton 
scatterkg Neville and Rohrlich (1970) could show that the results of the plane wave 
method are essentially correct. 

A monochromatic plane wave with fixed propagation direction n is characterised by 
the wave vector k "  = w(1,  n ) ,  w being the laser frequency. The vector potential for 
arbitrary polarisation is given by 

L 

A w ( x ) = a  e?a,(5) 
I=1 

with amplitude a, polarisation vector e f  and 5 = kwx,.  For the following calculations 
circular polarisation is chosen: a l ( 0  =cos 6, a2(5) = -sin 5. In this case the inevitably 
lengthy expressions for the matrix elements reduce to a certain extent due to an 
additional symmetry (Mitter 1975). 

A frequently employed measure for the intensity of the laser field is the (classical) 
parameter 

v 2 =  (ea/mc2)*.  

In technical units: v 2 = 7 * 5 x  10-"A21, where the wavelength A is in cm and the 
illumination density I in watt cm-2. Due to recent developments in laser technique a U* 
of magnitude one appears to be attainable. 

2. The Mdler amplitude 

The lowest order Feynman graphs for Moller scattering are (Figure 1): 

Figure 1. da/dn 
frequencies and Eli," = 5.1 eV,  
Lower curve: w = 8 x 10'5s-'. 

cm2) as a function of the intensity parameter v 2  for two laser 
= 45", 4 = 90". e = 90". Upper curve: U = 1.9 x 1015 s-', 
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For the electron-electron scattering in an external field the electron lines can be 
replaced by the Volkov solutions (Volkov 1935). Here we shall use an equivalent 
formulation in momentum space instead, the E-representation (cf Mitter 1975). As 
above the free solutions are inserted for the electron and photon lines, but instead of the 
usual vertex y@8( p ’  - p + q )  we have to use the modified expression 

v f i ( p ’ p l q )  = (2.rr)r4 d4xl?(xIp’)y’’E(xIp) exp(iq. x )  
with 

. W e )  = exp(-ie. xX1- (ea/2p,)y,y,a,(u)l 

for a laser field of arbitrary polarisation?. 
Then the matrix element for Moller scattering in an external field is 

For circular polarisation the integrals in E(xlp)  are elementary. All integrals in 
u ’ ( p ’ p l q )  can be transformed to &functions, if we use the expansion 

+cc 

exp[iA (sin 6 +p)]  = 1 J, (A ) exp[in (5 + p ) ]  
n = -a2 

and if in addition the laser is assumed to be infinitely extended in the U direction. This 
last step produces infinite phase factors which, however, drop out in so that we 
shall omit them from now on. By introducing the definitions 

and the effective momenta p’ (cf Becker 1976) 

; = e + -  (ea)2 k with p” = m2(1 + v 2 )  = m i  
2p.  k 

u” takes the final form 
oc 

u ” ( p ’ p l q )  = a 4 ( i ’ - @ + q  i n k )  exp(inp(p’, p))GC(e’, e ) .  
n=-a2 

Instead of the momentum conservation e ’ - p  + q  = 0 at the vertex y @  without an 
external field, we now have p” -6 + q + nk = 0. Thus the laser affects an electron in two 

+ We employ natural units (h  = c = 1) and a metric such that a .  b = a,bY = a o b o - a .  b. A definition of 
light-like coordinates and Dirac matrices is given in Appendix A. 
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ways: the mass of the electron is changed ( m  + m*), and the electron can emit or absorb 
n laser quanta. Inserting the expression for u w  into (2.1) we obtain after integration 

The effect of this-compared with the free Maller scattering-strongly modified 
conservation law on the energies of the scattered electrons will be examined in detail 
elsewhere (Bos, Brock, Mitter and Schott 1978). 

Another interesting feature is that Sfi and hence also the cross section exhibit a 
resonance behaviour if one of the denominators of Sfi becomes zero (cf Oleinik 1967): 

or, equivalently, 

As the Feynman graphs show, 4 is the momentum of the virtual photon exchanged 
between the electrons. 

According to (2.5) resonance is to be expected when the emission of the photon at 
one vertex and its absorption at the other one can take place as a real process. The 
resonances are treated in more detail in 8 5. 

3. The cross section 

The cross section is calculated in the usual way from the square of the Maller amplitude, 
averaged over the initial electron spin states sl, s2 and summed over the final spin states 
si, sb. Similar to simpler processes in laser fields the cross section is a sum of incoherent 
contributions du, corresponding to the r-dependent energies of the scattered electrons: 

+E 

d u =  1 dcrr 
f = - %  

with 
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Due to the external field approximation the laser field can absorb or emit arbitrarily 
high energies, hence the infinite sum over r. Contrary to the field the electrons cannot 
emit an arbitrary number of photons because of their limited kinetic energy. This 
implies a lower limit for r (Brock 1977). A definite upper limit for r cannot be deduced. 
The assumption that the scattering process will not change the field will, however, only 
be valid for values of r which are not too large. The convergence in r will be discussed 
later in this section. 

The integration over p i  can easily be performed if the transformation p ;  +p’; is 
* = 0, d3p; = p i 2  dp’, dSZ and applied; the Jacobian is 1. Using p 2  - m 2 = @ i 2  -m2  

Ip;  I dp; = E ;  dE;, we obtain 

I 2  

The last integration requires a solution E ;  of the equation 

( @ I + @ * - $ ;  +rk)2-mi  = O .  

(3.1) 

Without the external field the argument of the &function is [ ( p l + p 2 - p ; ) 2 - m 2 ]  
which leads to a quadratic equation in E; .  In the centre of mass system (CMS) the 
integration is trivial because El  =E2=E‘ ,  =E; .  Due to the form of the effective 
momenta the energy condition (3.2) is now much more complicated and includes 
values of E ;  to the fourth power. The introduction of a CMS for the incoming electrons 
by the definitions pl = (E,  p ) ,  p2  = (E,  - p )  does not reduce these difficulties, as in 
general neither E = E ;  nor E = E ;  or E ;  = E ;  will be valid. Therefore Oleinik used an 
auxiliary system by redefining p’; := p i  + (ea)’/2p; . k - rk and setting + g 2  = 
@; +@; = 0. Then the last integration is easily carried out, but the transformation back 
to a physical reference system is difficult. Even in the non-relativistic limit the relations 
between the angles in the auxiliary system and the laboratory frame are very compli- 
cated. 

Here a physical reference system shall be used from the start, the CMS of the 
incoming electrons (in which all formulas are shorter than in the laboratory system). In 
the limit of a vanishing external field this CMS goes over to the normal CMS. The 
momenta are 

P I  := (E, p ) ,  

and the angles are defined by 

P2 := (E, - p ) ,  p ;  = ( E ; ,  p ;  ), ~k = (E;,  pi) 

$ = 4(k P), 4 = &C(k p ;  ), 6 = 4(P, p ;  1 s  

The scattering angle 6 must satisfy the condition 

I $ - +  4 8 <min($+4,  2 r - $  -4) .  

The definition describes an experimental situation where the incoming electrons are 
shot against one another with equal and opposite momenta and interact within the laser 
field. For the calculation of the cross section E, 9, cp and 8 must be given. E ;  and E; 
have to be determined numerically, since the energy condition (3.2) can only be solved 
without approximations in very specific cases. If a solution E; is known, the last 
integration in (3.1) can be performed and we obtain 
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The sum over the electrons spins may be used as usual to convert M, into traces over 
Dirac matrices. Here this procedure has several disadvantages. One arrives at traces 
with products of up to sixteen matrices so that the general result is far too long to permit 
an analysis of the structure of the cross section or to serve as a starting point for 
numerical calculations. Even worse is an additional infinite sum. 

Inserting ( 2 . 3 )  and the definitions ( 2 . 2 )  into M, the matrix parts and the terms 
depending on the index n can be dealt with separately. The numerical treatment of the 
matrix parts is long but not difficult. All n-dependent terms have a form similar to 

J,  (A1)J-r-n ( A z )  exp(-inx) 
n = - X  (6; - p ’ l + n k ) 2  

with A ,  := A ( p : , p , )  ( i =  1 , 2 )  and x = p ( p ; , p z ) - p ( p { , p l ) .  For p i .  k # p l .  k the 
resonance denominator can be written 

(6; -61 + n k ) *  = 2 ( p 1 .  k - p i .  k ) ( b  - n ) ,  

Thus the n-dependent terms reduce to 

+O0 J , , (AI ) J - , - , (Az)  exp(-inx) 
b - n  S, (b)= 1 

n = - x  

An explicit expression for M,  is given in Appendix B. In the special case p i  . k = 
P I .  k one has (6; - 6 1 + n k ) ’ =  2 ( m Z - p ; .  PI),  independent of n. Then S , ( b ) / ( p l .  k - 
p i .  k )  in M,  must be replaced by T, / (p i  . p1  - m 2 )  with 

T, = 1 J, (A l )J-r -n (A2)  exp(-inx) 
+CO 

n = -m 

exp(-ix) -r’2 

) + A  exp(ix) 
J - ,  ( A ?  + A; + 2A 1h 2 cos x ) 1’2 

(cf Watson 1966). There are no divergences in this case apart from the Coulomb 
divergence ( 0  = O”, q5 = $, E = E ; )  which also exists in free Maller scattering. 
Unfortunately no closed form could be found for S,(b). Approximations are hard to 
obtain because of the large range of values of b and A .  Therefore the summation had to 
be done directly by the computer. For the convergence of the series S,(b) the properties 
of the Bessel functions are decisive. For fixed A the magnitude of J n ( A )  remains roughly 
the same between n = 0 and ( n  1 = A ,  but converges rapidly to zerofor In I > A .  In order to 
reach the convergence region, many terms have to be added because the argument A 
(9  ( 3 . 2 ) )  becomes very large for high laser intensity and high electron energies. For a 
Nd-glass laser, e.g. with w = 1.9 x ~ O ” S - ~ ,  v 2  = 0.1 and r = 0, we find A = lo3 for a 
kinetic energy of 5 eV, but A = lo6 for 5 MeV. As A is inversely proportional to w ,  A is 
smaller for higher frequencies. Therefore a part of the calculations was made for 
w = 8 x lO”s-’, although high power ultraviolet lasers probably do not yet exist. But 
even then the summation of so many terms is extremely uneconomical and not very 
accurate. For these reasons the calculations of § 4 and 5 had to be restricted for high 
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intensities to non-relativistic energies (500 eV at most, i.e. n 5 30 000). The relativistic 
formulation of da /dR is too clumsy for this energy region and non-relativistic expan- 
sions are needed for the numerics (Brock 1977). 

4. Results for the off resonance cross section 

As mentioned at the beginning of § 3 the cross section is an incoherent sum 

d a  da,  
dR , d o '  
-=E- 

Similar to the n-convergence of S , ( b ) ,  the convergence of this sum is determined by 
the properties of the Bessel functions and depends on the electron energies and the laser 
intensity. In principle the single contribution da,/dR can be measured separately since 
the energies of the scattered electrons are different for each r. This would require, 
however, a very high resolution since the energy difference for two consecutive values 
of r is of the magnitude of the energy of a laser photon. Therefore only approximation 
values of the sum da /dR are presented in this section. 

For figures 2 and 3, IJ and 4 were chosen in such a way that the difference between 
da /dR and the free cross section is as large as possible. 

Figure 2 shows that v 2  dependence of da /dR for two laser frequencies. Low energy 
electrons hit the laser beam at an angle of 45" to the laser axis. They are detected in a 
plane perpendicular to the laser axis and at a scattering angle of 90". For both 
frequencies the cross section may be changed by loo%, if the laser field is sufficiently 
strong. The deviations from the free case ( v 2  = 0) turn out to be even larger for a kinetic 
energy of 25.5 eV so that this intensity-dependent effect is not restricted to very low 
energies of the electrons and should be accessible for experimental verification. 
Because of technical difficulties no predictions could be made for the middle or high 
relativistic energy region. 

In figure 3 the dependence of the cross section on the scattering angle 0 is presented. 
Again the electrons are shot into the laser beam at an angle of 45" and detected in a 

I 
0 0 5  10 

V2 

Figure 2. du/df l  (10-16cm2) and the cross section without laser field, (da /df l )  free, as a 
function of the scattering angle 6 for w = 8.0 x l o i 5  s-',  Y* = 1, Ekln = 5 . 1  eV, $ = 45", 
d = 90". 
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C5 90 135 
e (deg) 

Figure 3. v2  dependence of the resonance cross section (in units cm2) for w = 1.9 x l O I 5  s-', 
Ekln = 5.1 eV, IC, = 45", 6 = 44.83", 9 = 0.17". 

plane perpendicular to the direction of the incoming electrons. The diagram shows that 
in figure 2 a suitable angle, 8 = go", was chosen. For higher energies the graphs look 
similar. For measurements it is important to notice that da /df l  varies near e = 90" only 
slightly with small changes in 8; the same applies for the corresponding values of (I, and 
4. 

5. Resonances 

In § 2 the resonance conditions (2.5) were derived. Before starting to calculate the 
renormalised cross section at a resonance point, the question must be examined 
whether resonances may exist at all for physically reasonable parameters for the 
electrons and the laser field. 

Inserting the expressions for the effective momenta into the first resonance condi- 
tion and resolving for cos 8, we obtain the equation 

COS e =[(P-WZ~)(E;~ -m2)]-l/* 

x { EE; - m 2  - nw[E; -COS 4(Ei2 - m2)'/' -E +COS $(E2 - m2)1/2]  

[E; -COS d(E;* -m2)'/2](E-cos (I,(E2-m2)1/2) 
+1 2[E; -cos4(E;' -m2)' '2-E+cos ~ , h ( E ~ - m ~ ) ' / ~ ] ~  

2v 

If for a certain parameter set [cos 0 1 s  1 and the angle condition I ( I , - 6 1 ~ 6 s  
min($ + 4,27r - CL - d)  are fulfilled at the same time, the Moller cross section will be 
resonant. 

For a qualitative examination the crude approximation (EE; - 
m2)/[(E2- m2)(E;' - m 2 ) ] ' / 2  = 1 may be taken for the nonrelativistic energy region. 
Then the structure of the equation for cos 0 becomes clearer: 
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Without an external field there is only the Coulomb divergence for 0 = 0". The 
external field produces a set of resonances labelled by n. Since the function g is always 
positive, this n-multiplet is shifted into the unphysical region. 

Explicit examples for resonance points are presented below in context with the 
results for the renormalised cross section. Besides the height, the width and spacing of 
the resonances will also be calculated. 

5.1. Renormalisation of the cross section 

The following radiative corrections must be inserted: 
( a )  Vacuum polarisation: The free photon propagator is replaced by (an approxi- 

mation of) the full photon propagator in the external field. In this way the photon 
instability due to pair creation in the laser field is taken into account (Becker and Mitter 
1975). 

( b )  Self-energy correction: The inclusion of the electron self-energy leads to a 
complex effective mass (Becker and Mitter 1976). The imaginary part of this effective 
mass corresponds to a finite line width of the quasi levels and hence to a finite life time 
(cf also Oleinik 1968). 
A vertex correction is not important in this context since it does not affect the pole 
structure of the cross section. 

For the damping of the resonant cross section by the vacuum polarisation the 
imaginary part of the photon mass is decisive. As will be shown below, a resonance 
behaviour can only be expected for non-relativistic electrons. For slow electrons and 
optical lasers, however, the imaginary part of the photon mass is very difficult to 
evaluate (Becker and Mitter 1975). Therefore the calculations of Ritus (1970) for a 
constant crossed field-the limiting case of the laser field-were used for an estimation 
of the magnitude of the correction term. The correction turned out to be extremely 
small so that the dominant part of the renormalisation must be the self-energy of the 
electrons. 

For circular polarisation of the laser field the self-energy corrcctions were calculated 
by Becker and Mitter (1976): The magnitude of these corrections depends on the 
parameter 

le* kl p = 2 -  
m 2  * 

For non-relativistic electrons and optical laser frequencies p is very small (between 
lo-' and lo-'). Then the pole of the corrected electron propagator is approximately 
determined by 

p w p @  =m2(1 + A m / m ) .  (5.1) 
The real part of Am can be neglected. The imaginary part is given by the following 

approximate formulae which are correct to a few per cent: 
2 0 . l s v  s l  

v 50.1. 
2 (5 .2 )  

Because of the complex mass of the electrons, their energy also obtains an imaginary 
part. Hence the energy of the incoming electrons must be replaced by E- imT in the 
resonance denominator (r is twice the width of the quasi-levels). Neglecting terms 
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proportional to r2, we obtain from the imaginary part of the mass shell relation (5.1) 

r = -(m/E)J,(Amb)/m). 

For the scattered electrons E ‘  must be replaced by E + imr’  with 

r’ = -(m/E‘)J,,,(Am(p’)/m). 

These substitutions lead to an imaginary part R of the resonance denominator: 

m-’fi(j; -$1+nk)2+m-2fi($’, -$ ,+nk)*+iR(n)  

with 

x 20- + r’) + (E’- / p i /  COS 4 -E + 1p1 cos 4 )  

)I r 
I 

X 
( E - l p ,  cossl , -E’-Ip’ /cos~ 

r and R are roughly proportional to v 2 .  For a Nd-glass laser (u/m = 2.4 x with 
V *  = 1 and for electrons at 5.1 eV, r = 0, 4 = 45’, 4 = 44-83’ one obtains a radiative 
width r of 2.5 x (for the same parameters the imaginary 
part of the photon mass in the crossed-field approximation is exp(-lO”)). 

Because of the renormalised resonance denominator the sum S, (b )  must be 
redefined: 

eV and R = -2.0 x 

hence 

must be inserted into the cross section at resonance (for all non-resonant cross sections 
R ( n )  can be neglected even for high laser intensities). 

At a resonance point (b  - n)  in the denominator of &(b)  vanishes, i.e. b is an integer 
n *. Therefore the height of the resonance depends on the magnitude of 

Jn*(Al)J-r-n*(hz)  

R(n*)/(pl  . k - p i  . k)/m2‘ 

A closer analysis of this expression shows that the following conditions are most 
favourable for a change in magnitude of the resonant cross section relative to cross 
sections in the vicinity of the resonance point: 

-small (non-relativistic) electron energies 
-high laser intensity 
-high laser frequency 
-small scattering angle. 
For a Nd-glass laser, v 2  = 1 and E k i n  = 5.1 eV, the angles 4 = 4 = 45’ and 0 = 14 - 4 I 

turn out to be the optimal combination. A smaller electron energy would produce 
higher resonances. But it is already questionable whether scattering experiments can 
be carried out with 5 eV electron beams. 
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Larger resonance effects can also be obtained by means of higher laser frequency, 
e.g. in the ultraviolet region. Although high intensities may not be reached with 
ultraviolet lasers in the near future, results will also be presented for this frequency 
region. 

The following parameter sets were chosen for the numerical calculations of 
resonance points and the corresponding cross sections: 

(i) w = 1-9 x 1015 s-l 

(ii) w = 8.0 x ~ O " S - ~  

Ekin = 5.1 eV c$ = 44.83" 

Ekin = 2 5 . 5  eV * = 45" c$ = 44.83" 

* = 45" 
e = 0.17" 

e = o m 0 .  
For these parameter sets the intensity dependence of the resonant cross section is 

shown in figures 4 and 5 .  The resonance points were calculated for r = 0; there are no 
additional resonances for the same v 2  for r f 0, since b varies considerably with r. 

' (du/dn),, 

10-61 , , 

0 0 5  10 15 
Y2 

Figure 4. v 2  dependence of the resonance cross section (in units cm2) for w = 8 x 1015s-1,  
Ekln = 25.5 eV, $ = 45", q5 = 44.83, 8 = 0.17". 

05 10 15  
V2 

Figure 5. Cross sections at resonance (circles), off-resonance (broken curve) and free cross 
section (full curve) in units cmZ as a function of the scattering angle B for w = 1.9 x l O I 5  s-', 
Y' = 0.5, Er,, = 5.1 eV, $ = 4 9 ,  Q = 44.83". 
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No resonances were found for v 2  < lo-'. There are further resonances for v 2  > 1, 
but formula (5.2),, on which the calculations of the renormalised cross section are based, 
is only valid for v 2  5 1. 

The deviations from the cross sections between two resonances are quite large for 
the ultraviolet laser; a factor lo4 for v 2  = lo-'. For the Nd-glass laser the maximum of 
the resonant cross section is ten times as large as the cross sections near the resonance 
point. 

Because of the larger number of resonance points, the dependence of the 
resonances on v 2  is better to be seen for the infrared laser: For a certain v 2  there is a 
maximum value. For smaller and larger v 2  the resonance elevation tends to zero. (A 
similar result is obtained for the ultraviolet laser, too, if the input parameters are varied 
slightly,) This somewhat surprising form of the v 2  dependence is a consequence of 
expression (5.3). R (n*) is proportional to v2, hence the resonances should be higher for 
small v2. This tendency is counterbalanced by the Bessel functions which fall off very 
rapidly for small v2. On the other hand R ( n * )  becomes larger for v 2  > lo-' whereas the 
Bessel functions change only slightly with increasing v 2  so that again the resonance will 
be small. 

Calculations have also been done for higher electron energies: in the case of the 
Nd-glass laser (and the same angles as above) for 25 eV, 0.5 keV and 2.5 keV 
electrons, for the ultraviolet laser for 0.5 keV and 2.5 keV. In each case the resonance 
elevation dissappeared completely. 

Therefore the somewhat unpleasant alternative for experiments is either to take an 
infrared laser-for which high intensities are attainable-and to put up with very small 
electron energies, or to use faster electrons and a laser with higher frequency. Finally, 
the dependence of the resonances on the scattering angle 8 is presented in figure 6 for 
the first parameter set in order to confirm for this example that the resonance indeed 
reaches its maximum for the minimum value of 8. Clearly the height of the resonances 
decreases rapidly for increasing 8 (IJ and 4 fixed). For smaller differences /I+$ -41 the 
resonances become higher if the minimal 8 is chosen. Thus an experiment should be 
carried out at the smallest still measurable 8. 

I . . , . 1 . . . 
0 2  025 

6 (degl 

Figure 6. Resonance widths 2A8 
Ek,n = 5.1  eV, JI = 45'. 4 = 44,83", 8 = 0.17". 

deg) and 2AE(10-* eV) for w = 1.9 x l O I 5  s-',  
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5.2. Width of the resonances 

Because of the complicated form of the cross section one cannot assume a Breit-Wigner 
form for the resonance width, so one has to start from the definition. The resonance 
width Ax for a parameter x is chosen to satisfy the condition that the cross section at the 
points x = XR +Ax is half the resonant value at xR. The cross section has the following 
structure: 

A 
-exchange term 

@\ - @ l + n k ) 2 + i R ( n )  

In the case of a high resonance the exchange term can be neglected since in general 
the denominator will not vanish at the same parameter values as the denominator of the 
first term. Further approximations finally yield a formula for the width of a high 
resonance: 

Since R is proportional to v2, the resonances will be very narrow for small v 2 .  The 
interesting widths are those for the energy and the angles. In the case of the scattering 
angle B the calculation is easy since R does not depend on B. 

Thus AB is inversely proportional to the electron momenta and sin OR and-because 
of R-directly proportional to v 2 .  Hence the resolving power relative to B will be good 
for high laser intensities, small electron momenta and small scattering angles- 
preconditions which are also needed for high resonances. 

The calculation of AE is more difficult. Therefore the numerical results are directly 
given in figures 7 and 8 for the same parameter sets as in figures 4 and 5 .  In all cases the 
widths are very small (no line broadening effects have been considered, e.g. the fact that 
a laser is really not strictly monochromatic). 

I 
0 05 10 15 

V 2  

Figure 7. Resonance widths 2h8 
E k l n = 2 5 , 5 e V ,  $=45", 4 = 4 4 . 8 3 ,  8=0,17". 

deg) and 2AE eV) for w = 8 , O X  l O I 5  s- ' ,  
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2AeKJ' deg) 

0 0 5  10 15  
V2 

Figure 8. Resonance width for w = 8 x l O I 5  s-', Ekln = 25.5  eV, II, = 45", 4 = 44.83", 8 = 
0.17". 

5.3. Spacing of the resonances 

For the experimental detection of resonances the question is important whether the 
resonances overlap. An explicit approximation formula for the distance between the 
resonances can be given for 8. For the other parameters the spacing must be calculated 
numerically. The distance between two resonances on the 8 scale, 88, is obtained from a 
nonrelativistic expansion of the resonance condition for small angles 8 and 88 << 8: 

6J 21Pl cos CL - 2lPi I cos 4 + tp; l 2  - /PI2 

e 2IP'l IPi I se =- 

Again a high laser frequency, small electron energies and scattering angles are 

In the following tables resonance spacing and width are compared in two examples 
favourable. 

for each parameter set (tables 1 and 2): 

Table 1. w = 1.9 X 10" S-' EL, ,  = 5.1 eV ijj = 45" 4 = 44.83" B = 0.17" 

2 v 68 (deg) 2A8  (deg) 6 E  (eV) 2 A E  (eV) 

0.31 1.7 x lo-' 2 . 8  x lo-' 2 . 0  0.003 
1.09 1.1x10-2 2 .2  x 1 0 - ~  1.1 0.01 1 

Table 2. w = 8.0 x 10" S-'  EL," = 25 .5  eV @ =45" 6 = 44.83' 
B=O.17" 

2 
Y 86 (deg) 2A8 (deg) 6 E  (eV) 2 A E  (eV) 

0.01 3.4 x lo-* 1 . 9 ~  2 5 . 0  0.001 
0.94 2.6  X lo-' 3.1 x 1 0 - ~  12.5 0.03 
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The values of the spacing relative to + and C$ are aproximately the same as for 8. The 
examples show clearly that the distances between the resonances are much larger than 
their width. 

6. Conclusions 

The results of 8 4 and 5 show clearly that the effects produced by a strong laser in Moller 
scattering are large enough for experimental verification. A necessary precondition, 
however, is a very high laser intensity. 

For the measurement of the intensity-dependent shift of the cross-section in 
infrared laser (e.g. Nd laser) is sufficient for which v 2  - 1 seems to be attainable. For 
certain electron parameters the change in cross-section relative to free Mdler  scatter- 
ing is considerable-more than 100°/~ for v 2  = 1. Furthermore the effect appears not to 
be restricted to very slow electrons. 

In the case of the resonances the effects are, of course, much larger. Apart from the 
required strong laser field, the experimental requirements are different. If an infrared 
laser is used, high resonances can be expected only for very slow electrons ("5 eV). For 
an ultraviolet laser slightly higher electron energies ( = 2 5  eV) may be taken, but then 
one has the problem of reaching high intensities ( v 2  h with such a laser. In any 
case a high angular resolving power is required since the scattering angle must be as 
small as possible and the angular spacing of the resonances is rather narrow. Thus the 
experimental proof of the existence of resonances will be difficult, but not impossible. It 
will depend on the technical perfection of the apparatus used. 
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Appendix A. Light-like coordinates 

From the orthogonal set of unit vectors n and e, the four-vectors 

n u  = ~ " ~ ( 1 ,  n), ii" = 2-1'2(1, - n ) ,  e? = (0, e l )  

can be constructed which serve as a base of the Minkowski space. The vectors n and ii 
are light-like, i.e. n 2  = r i 2  = 0, n . = 1. Instead of el  and e2 the vectors 

e? = ( e ?  *ieg) 

2 2  with e+e- = -1, e,  = e-  = e,. n = e, .  n  ̂ = 0 may be introduced. 
Any vector p can be decomposed according to 

p " = n "pu + ii @pt. + e ?pi = n + ii "pU + e + p -  + e - p +  

with the components 

p u  = p .  ii p U = p . n  p t  = - p  . e, pi = - p .  e,. 
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A special notation is used for the coordinate vector: 

U = x u ,  U =xu .  

With this notation the scalar product p . x has the form 

The algebra for the light-like components yu, yu, y* of the Dirac matrices is 
particularly advantageous for many problems. Detailed information may be found in 
Mitter (1975). 

Appendix B. Explicit form of electron momenta and differential cross section (for a 
numerical treatment) 

According to the reference system defined in § 3 the momenta of the incoming electrons 
are given by E l  = E2 = E ,  p1 = -p2  = p .  The polarisation vectors e l ,  e2 and the pro- 
pagation vector n are chosen as a base for the three-dimensional space. Using the 
cylindrical symmetry of the laser field the incoming electrons may be chosen to be in the 
el-e2 plane and we have 

p 1  = (E, 0 ,  ( E ~  - m2l1l2 sin (I,, (E’ - m2)”2 COS 4 )  

p2 = (E, 0,  - (E2  - m2j1l2 sin 4, - (E2  - m2)’12 cos (I,). 

E ;  must be calculated numerically from ( 3 . 2 )  (Brock 1977). 
For sin CL # 0 one obtains 

p i  = (E; ,  [(E’,2 - m 2 )  (sin2 4 -(cos e -cos $ cos 4)2/sin2 

x ( E ; ~  - m2)1/2(cos e -cos (I, cos 4/sin (I,), (E;’ - m ’ ~ ’ ’ ~  cos 4 j .  

If the electrons come in parallel or antiparallel to the laser, i.e. sin (I, = 0, there is an 
additional degree of freedom because of the cylindrical symmetry of the system of laser 
plus incoming electrons. If we chose p i  . e l  = 0 we obtain 

p i  =(E\,  0, (Ei2 - m 2 ) 1 / 2  sin 4, (Ei2 -m2)”*  cos 4).  

The components of p 2  are given by 

p ;  = ( E ;  ( E ;  - (Ei2 - m 2 ) 1 ’ 2  COS 4) + 2E(E - E ;  + (E;’ - m 2)1’2 COS 4) 
2(2E - E ;  + (Ei2 cos 4 j , 

The differential cross section is given by (3.3). The parts of M, containing Dirac 
matrices have the form 
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p := p ( p 4 ,  p 2 ) ,  M,  is given by 
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